A comparison of micro-mechanical modeling of asphalt materials using finite elements and doublet mechanics
نویسندگان
چکیده
A comparative study is given between two micro-mechanical models that have been developed to simulate the behavior of cemented particulate materials. The first model is a discrete analytical approach called doublet mechanics that represents a solid as an array of particles. This scheme develops analytical expressions for the micro-deformation and stress fields between particle pairs (a doublet). The second approach is a numerical finite element method that establishes a network of elements between neighboring cemented particles. Each element has been developed to model the local load transfer between particles. While the two modeling schemes come from very different beginnings, they have a fundamental similarity. However, they also have some basic differences. In order to pursue these similarities and differences, three example problems are investigated using each modeling approach. Even with the differences, the two model predictions of the micro-stress distributions for each example compared quite closely. These results also indicated significant micro-structural effects that differ from continuum elasticity theory and could lead to better explanations of observed failures of these types of materials. 2004 Elsevier Ltd. All rights reserved.
منابع مشابه
Parametric Model Study of Microstructure Effects on Damage Behavior of Asphalt Samples
This paper presents a computational modeling study of the microstructural influence on damage behavior of asphalt materials. Computer generated asphalt samples were created for numerical simulation in indirect tension and compression testing geometries. Our previously developed micromechanical finite element model was used in the simulations. This model uses a special purpose finite element tha...
متن کاملMixed-Mode Stress Intensity Factors for Surface Cracks in Functionally Graded Materials Using Enriched Finite Elements
Three-dimensional enriched finite elements are used to compute mixed-mode stress intensity factors (SIFs) for three-dimensional cracks in elastic functionally graded materials (FGMs) that are subject to general mixed-mode loading. The method, which advantageously does not require special mesh configuration/modifications and post-processing of finite element results, is an enhancement of previou...
متن کاملLateral Vibrations of Single-Layered Graphene Sheets Using Doublet Mechanics
This paper investigates the lateral vibration of single-layered graphene sheets based on a new theory called doublet mechanics with a length scale parameter. After a brief reviewing of doublet mechanics fundamentals, a sixth order partial differential equation that governs the lateral vibration of single-layered graphene sheets is derived. Using doublet mechanics, the relation between natural f...
متن کاملFinite Element Simulation of Contact Mechanics of Cancer Cells in Manipulation Based on Atomic Force Microscopy
The theory of contact mechanics deals with stresses and deformations which arise when the surfaces of two solid bodies are brought into contact. In elastic deformation contact occurs over a finite area. A regular method for determining the dimensions of this area is Hertz Contact Model. Appearance of atomic force microscope results in introduction of Contact ...
متن کاملBending, Buckling and Vibration of a Functionally Graded Porous Beam Using Finite Elements
This study presents the effect of porosity on mechanical behaviors of a power distribution functionally graded beam. The Euler-Bernoulli beam is assumed to describe the kinematic relations and constitutive equations. Because of technical problems, particle size shapes and micro-voids are created during the fabrication which should be taken into consideration. Two porosity models are proposed. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006